
Pharo 9 by Example

Stéphane Ducasse and Gordana Rakic with Sebastijan Kaplar and Quentin Ducasse

August 15, 2021

Copyright 2021 by Stéphane Ducasse and Gordana Rakic with Sebastijan Kaplar and
Quentin Ducasse.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations ii

1 Classes and metaclasses 1

1.1 Rules for classes . 1

1.2 Metaclasses . 2

1.3 Revisiting the Pharo object model . 2

1.4 Every class is an instance of a metaclass 3

1.5 Querying Metaclasses . 4

1.6 The metaclass hierarchy parallels the class hierarchy 5

1.7 Uniformity between Classes and Objects 6

1.8 Inspecting objects and classes . 7

1.9 Every metaclass inherits from Class and Behavior 8

1.10 Responsibilities of Behavior, ClassDescription, and Class 10

1.11 Every metaclass is an instance of Metaclass 11

1.12 The metaclass of Metaclass is an instance of Metaclass 11

1.13 Chapter summary . 13

Bibliography 15

i

Illustrations

1-1 Sending the message class to a sorted collection 3

1-2 The metaclasses of SortedCollection and its superclasses (elided). . . . 4

1-3 The metaclass hierarchy parallels the class hierarchy (elided). 5

1-4 Message lookup for classes is the same as for ordinary objects. 6

1-5 Classes are objects too. 7

1-6 Metaclasses inherit from Class and Behavior. 8

1-7 new is an ordinary message looked up in the metaclass chain. 9

1-8 Every metaclass is a Metaclass. 11

1-9 All metaclasses are instances of the class Metaclass, even the

metaclass of Metaclass. 12

ii

CHA P T E R 1
Classes and metaclasses

In Pharo, everything is an object, and every object is an instance of a class.
Classes are no exception: classes are objects, and class objects are instances
of other classes. This model is lean, simple, elegant, and uniform. It fully
captures the essence of object-oriented programming. However, its impli-
cations of this uniformity may confuse newcomers.

Note that you do not need to fully understand the implications of this uni-
formity to program fluently in Pharo. Nevertheless, the goal of this chapter
is twofold: (1) go as deep as possible and (2) show that there is nothing com-
plex, magic or special here: just simple rules applied uniformly. By following
these rules you can always understand why the situation is the way that it is.

1.1 Rules for classes

The Pharo object model is based on a limited number of concepts applied
uniformly. To refresh your memory, here are the rules of the object model
that we explored in Chapter : The Pharo Object Model.

Rule 1 Everything is an object.

Rule 2 Every object is an instance of a class.

Rule 3 Every class has a superclass.

Rule 4 Everything happens by sending messages.

Rule 5 Method lookup follows the inheritance chain.

Rule 6 Classes are objects too and follow exactly the same rules.

1

Classes and metaclasses

A consequence of Rule 1 is that classes are objects too, so Rule 2 tells us that
classes must also be instances of classes. The class of a class is called a meta-
class.

1.2 Metaclasses

A metaclass is created automatically for you whenever you create a class.
Most of the time you do not need to care or think about metaclasses. How-
ever, every time that you use the browser to browse the class side of a class,
it is helpful to recall that you are actually browsing a different class. A class
and its metaclass are two separate classes. Indeed a point is different from
the class Point and this is the same for a class and its metaclass.

To properly explain classes and metaclasses, we need to extend the rules
from Chapter : The Pharo Object Model with the following additional rules.

Rule 7 Every class is an instance of a metaclass.

Rule 8 The metaclass hierarchy parallels the class hierarchy.

Rule 9 Every metaclass inherits from Class and Behavior.

Rule 10 Every metaclass is an instance of Metaclass.

Rule 11 The metaclass of Metaclass is an instance of Metaclass.

Together, these 11 simple rules complete Pharo’s object model.

We will first briefly revisit the 5 rules from Chapter : The Pharo Object Model
with a small example. Then we will take a closer look at the new rules, using
the same example.

1.3 Revisiting the Pharo object model

Rule 1. Since everything is an object, an ordered collection in Pharo is also
an object.

OrderedCollection withAll: #(4 5 6 1 2 3)
>>> an OrderedCollection(4 5 6 1 2 3)

Rule 2. Every object is an instance of a class. An ordered collection is in-
stance of the the class OrderedCollection:

(OrderedCollection withAll: #(4 5 6 1 2 3)) class
>>> OrderedCollection

Rule 3. Every class has a superclass. The superclass of OrderedCollection
is SequenceableCollection and the superclass of SequenceableCollec-
tion is Collection:

2

1.4 Every class is an instance of a metaclass

Figure 1-1 Sending the message class to a sorted collection

OrderedCollection superclass
>>> SequenceableCollection

SequenceableCollection superclass
>>> Collection

Collection superclass
>>> Object

Rule 4. Everything happens by sending messages, so we can deduce that
withAll: is a message sent to OrderedCollection and class are messages
sent to the ordered collection instance, and superclass is a message sent to
the class OrderedCollection and SequenceableCollection, and Collec-
tion. The receiver in each case is an object, since everything is an object, but
some of these objects are also classes.

Rule 5. Method lookup follows the inheritance chain, so when we send the
message class to the result of (OrderedCollection withAll: #(4 5 6 1
2 3)) asSortedCollection, the message is handled when the correspond-
ing method is found in the class Object, as shown in Figure 1-1.

1.4 Every class is an instance of a metaclass

As we mentioned earlier in Section 1.2, classes whose instances are them-
selves classes are emph{called} metaclasses. This is to make sure that we can
precisely refer to the class Point and the class of the class Point.

3

Classes and metaclasses

Figure 1-2 The metaclasses of SortedCollection and its superclasses (elided).

Metaclasses are implicit

Metaclasses are automatically created when you define a class. We say that
they are implicit since as a programmer you never have to worry about them.
An implicit metaclass is created for each class you create, so each metaclass
has only a single instance.

Whereas ordinary classes are named, metaclasses are anonymous. However,
we can always refer to them through the class that is their instance. The
class of SortedCollection is SortedCollection class, and the class of
Object is Object class:

SortedCollection class
>>> SortedCollection class

Object class
>>> Object class

In fact metaclasses are not truly anonymous, their name is deduced from the
one of their single instance.

SortedCollection class name
>>> 'SortedCollection class'

Object class name
>>> 'Object class'

Figure 1-2 shows how each class is an instance of its metaclass. Note that
we only skip SequenceableCollection and Collection from the figure
and explanation due to space constraints. Their absence does not change the
overall meaning.

1.5 Querying Metaclasses

The fact that classes are also objects makes it easy for us to query them by
sending messages. Let’s have a look:

4

1.6 The metaclass hierarchy parallels the class hierarchy

Figure 1-3 The metaclass hierarchy parallels the class hierarchy (elided).

OrderedCollection subclasses
>>> {SortedCollection . ObjectFinalizerCollection .

WeakOrderedCollection . OCLiteralList . GLMMultiValue}

SortedCollection subclasses
>>> #()

SortedCollection allSuperclasses
>>> an OrderedCollection(OrderedCollection SequenceableCollection

Collection Object ProtoObject)

SortedCollection instVarNames
>>> #(#sortBlock)

SortedCollection allInstVarNames
>>> #(#array #firstIndex #lastIndex #sortBlock)

SortedCollection selectors
>>> #(#sortBlock: #add: #groupedBy: #defaultSort:to: #addAll:

#at:put: #copyEmpty #, #collect: #indexForInserting:
#insert:before: #reSort #addFirst: #join: #median #flatCollect:
#sort: #sort:to: #= #sortBlock)

1.6 The metaclass hierarchy parallels the class hierarchy

Rule 7 says that the superclass of a metaclass cannot be an arbitrary class: it
is constrained to be the metaclass of the superclass of the metaclass’s unique
instance: the metaclass of SortedCollection inherits from the metaclass of
OrderedCollection (the superclass of SortedCollection).

SortedCollection class superclass
>>> OrderedCollection class

SortedCollection superclass class
>>> OrderedCollection class

5

Classes and metaclasses

Figure 1-4 Message lookup for classes is the same as for ordinary objects.

This is what we mean by the metaclass hierarchy being parallel to the class
hierarchy. Figure 1-3 shows how this works in the SortedCollection hier-
archy.

SortedCollection class
>>> SortedCollection class

SortedCollection class superclass
>>> OrderedCollection class

SortedCollection class superclass superclass
>>> SequenceableCollection class

SortedCollection class superclass superclass superclass superclass
>>> Object class

1.7 Uniformity between Classes and Objects

It is interesting to step back a moment and realize that there is no differ-
ence between sending a message to an object and to a class. In both cases the
lookup for the corresponding method starts in the class of the receiver, and
proceeds up the inheritance chain.

Thus, messages sent to classes follow the metaclass inheritance chain. Con-
sider, for example, the method withAll:, which is implemented on the class
side of Collection. When we send the message withAll: to the class Or-
deredCollection, then it is looked up the same way as any other message.
The lookup starts in OrderedCollection class (since it starts in the class
of the receiver and the receiver is OrderedCollection), and proceeds up the
metaclass hierarchy until it is found in Collection class (see Figure 1-4).
It returns a new instance of OrderedCollection.

6

1.8 Inspecting objects and classes

Figure 1-5 Classes are objects too.

OrderedCollection withAll: #(4 5 6 1 2 3)
>>> an OrderedCollection (4 5 6 1 2 3)

Only one method lookup

There is only one uniform kind of method lookup in Pharo. Classes are just
objects, and behave like any other objects. Classes have the power to create
new instances only because classes happen to respond to the message new,
and because the newmethod knows how to create new instances. Normally,
non-class objects do not understand this message, but if you have a good rea-
son to do so, there is nothing stopping you from adding a newmethod to a
non-metaclass.

1.8 Inspecting objects and classes

Since classes are objects, we can also inspect them.

Inspect OrderedCollection withAll: #(4 5 6 1 2 3) and OrderedCol-
lection.

Notice that in one case you are inspecting an instance of OrderedCollec-
tion and in the other case the OrderedCollection class itself. This can be
a bit confusing, because the title bar of the inspector names the class of the
object being inspected.

The inspector on OrderedCollection allows you to see the superclass, in-
stance variables, method dictionary, and so on, of the OrderedCollection
class, as shown in Figure 1-5.

7

Classes and metaclasses

Figure 1-6 Metaclasses inherit from Class and Behavior.

1.9 Every metaclass inherits from Class and Behavior

Every metaclass is a kind of a class (a class with a single instance), hence
inherits from Class. Class in turn inherits from its superclasses, Class-
Description and Behavior. Since everything in Pharo is an object, these
classes all inherit eventually from Object. We can see the complete picture
in Figure 1-6.

Where is new defined?

To understand the importance of the fact that metaclasses inherit from Class
and Behavior, it helps to ask where new is defined and how it is found.

When the message new is sent to a class, it is looked up in its metaclass chain
and ultimately in its superclasses Class, ClassDescription and Behavior
as shown in Figure 1-7.

When we send new to the class SortedCollection, the message is looked
up in the metaclass SortedCollection class and follows the inheritance
chain. Remember it is the same lookup process than for any objects.

The question Where is new defined? is crucial. new is first defined in the class
Behavior, and it can be redefined in its subclasses, including any of the
metaclass of the classes we define, when this is necessary. Now when a mes-
sage new is sent to a class it is looked up, as usual, in the metaclass of this

8

1.9 Every metaclass inherits from Class and Behavior

Figure 1-7 new is an ordinary message looked up in the metaclass chain.

class, continuing up the superclass chain right up to the class Behavior, if it
has not been redefined along the way.

Note that the result of sending SortedCollection new is an instance of
SortedCollection and not of Behavior, even though the method is looked
up in the class Behavior! The method new always returns an instance of
self, the class that receives the message, even if it is implemented in an-
other class.

SortedCollection new class
>>> SortedCollection "not Behavior!"

A common mistake

A common mistake is to look for new in the superclass of the receiving class.
The same holds for new:, the standard message to create an object of a given
size. For example, Array new: 4 creates an array of 4 elements. You will
not find this method defined in Array or any of its superclasses. Instead
you should look in Array class and its superclasses, since that is where the
lookup will start (See Figure 1-7).

The method new and new: are defined in metaclasses, because they are exe-
cuted in response to messages sent to classes.

In addition since a class is an object it can also be the receiver of messages
whose methods are defined on Object. When we send the message class

9

Classes and metaclasses

or error: to the class Point, the method lookup will go over the metaclass
chain (looking in Point class, Object class....) up to Object.

1.10 Responsibilities of Behavior, ClassDescription, and
Class

Behavior

Behavior provides the minimum state necessary for objects that have in-
stances, which includes a superclass link, a method dictionary and the class
format. The class format is an integer that encodes the pointer/non-pointer
distinction, compact/non-compact class distinction, and basic size of in-
stances. Behavior inherits from Object, so it, and all of its subclasses, can
behave like objects.

Behavior is also the basic interface to the compiler. It provides methods
for creating a method dictionary, compiling methods, creating instances
(i.e., new, basicNew, new:, and basicNew:), manipulating the class hierar-
chy (i.e., superclass:, addSubclass:), accessing methods (i.e., selectors,
allSelectors, compiledMethodAt:), accessing instances and variables (i.e.,
allInstances, instVarNames...), accessing the class hierarchy (i.e., super-
class, subclasses) and querying (i.e., hasMethods, includesSelector,
canUnderstand:, inheritsFrom:, isVariable).

ClassDescription

ClassDescription is an abstract class that provides facilities needed by
its two direct subclasses, Class and Metaclass. ClassDescription adds
a number of facilities to the base provided by Behavior: named instance
variables, the categorization of methods into protocols, the maintenance of
change sets and the logging of changes, and most of the mechanisms needed
for filing out changes.

Class

Class represents the common behaviour of all classes. It provides a class
name, compilation methods, method storage, and instance variables. It pro-
vides a concrete representation for class variable names and shared pool
variables (addClassVarName:, addSharedPool:, initialize). Since a meta-
class is a class for its sole instance (i.e., the non-meta class), all metaclasses
ultimately inherit from Class (as shown by Figure 1-9).

10

1.11 Every metaclass is an instance of Metaclass

Figure 1-8 Every metaclass is a Metaclass.

1.11 Every metaclass is an instance of Metaclass

The next question is since metaclasses are objects too, they should be in-
stances of another class, but which one? Metaclasses are objects too; they
are instances of the class Metaclass as shown in Figure 1-8. The instances of
class Metaclass are the anonymous metaclasses, each of which has exactly
one instance, which is a class.

Metaclass represents common metaclass behaviour. It provides methods
for instance creation (subclassOf:), creating initialized instances of the
metaclass’s sole instance, initialization of class variables, metaclass instance,
method compilation, and class information (inheritance links, instance vari-
ables, ...).

1.12 The metaclass of Metaclass is an instance of Meta-
class

The final question to be answered is: what is the class of Metaclass class?
The answer is simple: it is a metaclass, so it must be an instance of Meta-
class, just like all the other metaclasses in the system (see Figure 1-9).

Figure 1-9 shows how all metaclasses are instances of Metaclass, including
the metaclass of Metaclass itself. If you compare Figures 1-8 and 1-9 you
will see how the metaclass hierarchy perfectly mirrors the class hierarchy,
all the way up to Object class.

11

Classes and metaclasses

Figure 1-9 All metaclasses are instances of the class Metaclass, even the meta-

class of Metaclass.

The following examples show us how we can query the class hierarchy to
demonstrate that Figure 1-9 is correct. (Actually, you will see that we told
a white lie — Object class superclass --> ProtoObject class, not
Class. In Pharo, we must go one superclass higher to reach Class.)

Collection superclass
>>> Object

Collection class superclass
>>> Object class

Object class superclass superclass
>>> Class

Class superclass
>>> ClassDescription

ClassDescription superclass
>>> Behavior

Behavior superclass
>>> Object

"The class of a metaclass is the class Metaclass"
Collection class class
>>> Metaclass

12

1.13 Chapter summary

"The class of a metaclass is the class Metaclass"
Object class class
>>> Metaclass

"The class of a metaclass is the class Metaclass"
Behavior class class
>>> Metaclass

"The class of a metaclass is the class Metaclass"
Metaclass class class
>>> Metaclass

"Metaclass is a special kind of class"
Metaclass superclass
>>> ClassDescription

1.13 Chapter summary

This chapter gave an in-depth look into the uniform object model of Pharo,
and a more thorough explanation of how classes are organized. If you get
lost or confused, you should always remember that message passing is the
key: you look for the method in the class of the receiver. This works on any re-
ceiver. If the method is not found in the class of the receiver, it is looked up
in its superclasses.

• Every class is an instance of a metaclass. Metaclasses are implicit. A
metaclass is created automatically when you create the class that is its
sole instance. A metaclass is simply a class whose unique instance is a
class.

• The metaclass hierarchy parallels the class hierarchy. Method lookup
for classes parallels method lookup for ordinary objects, and follows
the metaclass’s superclass chain.

• Every metaclass inherits from Class and Behavior. Every class is a
Class. Since metaclasses are classes too, they must also inherit from
Class. Behavior provides behavior common to all entities that have
instances.

• Every metaclass is an instance of Metaclass. ClassDescription pro-
vides everything that is common to Class and Metaclass.

• The metaclass of Metaclass is an instance of Metaclass. The instance-
of relation forms a closed loop, so Metaclass class class is Meta-
class.

13

Bibliography

15

	Illustrations
	Classes and metaclasses
	Rules for classes
	Metaclasses
	Revisiting the Pharo object model
	Every class is an instance of a metaclass
	Metaclasses are implicit

	Querying Metaclasses
	The metaclass hierarchy parallels the class hierarchy
	Uniformity between Classes and Objects
	Only one method lookup

	Inspecting objects and classes
	Every metaclass inherits from Class and Behavior
	Where is new defined?
	A common mistake

	Responsibilities of Behavior, ClassDescription, and Class
	Behavior
	ClassDescription
	Class

	Every metaclass is an instance of Metaclass
	The metaclass of Metaclass is an instance of Metaclass
	Chapter summary

	Bibliography

