
Pharo 9 by Example

Stéphane Ducasse, Sebastijan Kaplar, Gordana Rakic and Quentin Ducasse

July 27, 2021

Copyright 2017 by Stéphane Ducasse, Sebastijan Kaplar, Gordana Rakic and Quentin
Ducasse.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations ii

1 Syntax in a nutshell 1

1.1 Syntactic elements . 1

1.2 Pseudo-variables . 4

1.3 Messages and message sends . 5

1.4 Sequences and cascades . 6

1.5 Method syntax . 7

1.6 Block syntax . 8

1.7 Conditionals and loops . 9

1.8 Method annotations: Primitives and pragmas 11

1.9 Chapter summary . 12

Bibliography 13

i

Illustrations

ii

CHA P T E R 1
Syntax in a nutshell

Pharo adopts a syntax very close to that of its ancestor, Smalltalk. The syn-
tax is designed so that program text can be read aloud as though it were a
kind of pidgin English. The following method of the class Week shows an ex-
ample of the syntax. It checks whether DayNames already contains the argu-
ment, i.e., if this argument represents a correct day name. If this is the case,
it will assign it to the class variable StartDay.

startDay: aSymbol

(DayNames includes: aSymbol)
ifTrue: [StartDay := aSymbol]
ifFalse: [self error: aSymbol, ' is not a recognised day

name']

Pharo’s syntax is minimal. Essentially there is syntax only for sending mes-
sages (i.e., expressions). Expressions are built up from a very small number
of primitive elements (message sends, assignments, closures, returns...).
There are only 6 reserved keywords, i.e., pseudo-variables, and there are no
dedicated syntax constructs for control structures or declaring new classes.
Instead, nearly everything is achieved by sending messages to objects. For
instance, instead of an if-then-else control structure, conditionals are ex-
pressed as messages (such as ifTrue:) sent to Boolean objects. New sub-
classes are created by sending a message to their superclass.

1.1 Syntactic elements

Expressions are composed of the following building blocks:

1

Syntax in a nutshell

1. The six pseudo-variables: self, super, nil, true, false, and thisCon-
text

2. Constant expressions for literal objects including numbers, characters,
strings, symbols and arrays

3. Variable declarations

4. Assignments

5. Block closures

6. Messages

7. Method returns

We can see examples of the various syntactic elements in the table below.

Syntax expression What it represents

startPoint a variable name
Transcript a global variable name
self pseudo-variable
1 decimal integer
2r101 binary integer
1.5 floating point number
2.4e7 number in exponential notation
$a the character 'a'
'Hello' the string 'Hello'
#Hello the symbol #Hello
#(1 2 3) a literal array
{ 1 . 2 . 1 + 2 } a dynamic array
"a comment" a comment
| x y | declaration of variables x and y
x := 1 assign 1 to x
[:x | x + 2] a block that evaluates to x + 2
<primitive: 1> a method annotation (here primitive)
3 factorial unary message factorial
3 + 4 binary message +
2 raisedTo: 6 modulo: 10 keyword message raisedTo:modulo:
^ true return the value true
x := 2 . x := x + x two expressions separated by separator (.)
Transcript show: 'hello'; cr two cascade messages separated by (;)

Local variables. startPoint is a variable name, or identifier. By conven-
tion, identifiers are composed of words in ”camelCase” (i.e., each word ex-
cept the first starting with an upper case letter). The first letter of an in-
stance variable, method or block parameters, or temporary variable must be
lower case. This indicates to the reader that the variable has a private scope.

2

1.1 Syntactic elements

Shared variables. Identifiers that start with upper case letters are global
variables, class variables, pool dictionaries or class names. Transcript is a
global variable, an instance of the class ThreadSafeTranscript.

The message receiver. self is a pseudo-variable that refers to the object
that receives the message (that led to the execution of the method using
self). It gives us a way send messages to it. We call self ”the receiver” be-
cause this object will receive the message that causes the method to be ex-
ecuted. Finally, self is called a ”pseudo-variable” since we cannot directly
change its values or assign to it.

Integers. In addition to ordinary decimal integers like 42, Pharo also pro-
vides a radix notation. 2r101 is 101 in radix 2 (i.e., binary), which is equal to
decimal 5.

Floating point numbers. Such numbers can be specified with their base-ten
exponent: 2.4e7 is 2.4 x 10^7.

Characters. A dollar sign introduces a literal character: $a is the literal for
the character 'a'. Instances of special, non-printing characters can be ob-
tained by sending appropriately named messages to the Character class,
such as Character space and Character tab.

Strings. Single quotes ' ' are used to define a literal string. If you want a
string with a single quote inside, just double the quote, as in 'G''day'.

Symbols. Symbols are like Strings, in that they contain a sequence of char-
acters. However, unlike a string, a literal symbol is guaranteed to be globally
unique. There is only one Symbol object #Hello but there may be multiple
String objects with the value 'Hello'.

Compile-time literal arrays. They are defined by #(), surrounding space-
separated literals. Everything within the parentheses must be a compile-
time constant. For example, #(27 (true) abc 1+2) is a literal array of 6
elements: the integer 27, the compile-time array containing the object true
(non-changeable Boolean), the symbol #abc, the integer 1, the symbol + and
the integer 2. Note that this is the same as #(27 #(true) #abc 1 #+ 2).

Run-time dynamic arrays. Curly braces { } define a dynamic array whose
elements are expressions, separated by periods, and evaluated at run-time.
So { 1. 2. 1 + 2 } defines an array with elements 1, 2, and 3 the result of
evaluating 1+2.

Comments. They are enclosed in double quotes ” ”. ”hello” is a comment,
not a string, and is ignored by the Pharo compiler. Comments may span mul-
tiple lines but they cannot be nested.

Local variable definitions. Vertical bars | | enclose the declaration of one
or more local variables before the beginning of a method or a block body.

Assignment. The two characters := specify that a variable refers to an ob-
ject.

3

Syntax in a nutshell

Blocks. Square brackets [] define a block, also known as a block closure or
a lexical closure, which is a first-class object representing a function. As we
shall see, blocks may take arguments ([:i | ...]) and can have local vari-
ables ([| x | ...]). Blocks also close over their definition environment,
i.e., they can refer to variables that where reachable at the time of their defi-
nition.

Pragmas and primitives. < primitive: ... > is a method annotation.
This specific one denotes the invocation of a virtual machine (VM) primitive.
In the case of a primitive the code following it, it either to explain what the
primitive is doing (for essential primitives) or is executed only if the primi-
tive fails (for optional primitive). The same syntax of a message within < > is
also used for other kinds of method annotations also called pragmas.

Unary messages. These consist of a single word (like factorial) sent to
a receiver (like 3). In 3 factorial, 3 is the receiver, and factorial is the
message selector.

Binary messages. These are messages sent to a receiver with a single argu-
ment, and whose selector looks like mathematical operator (for example: +).
In 3 + 4, the receiver is 3, the message selector is +, and the argument is 4.

Keyword messages. Their selectors consist of one or more keywords (like
raisedTo: modulo:), each ending with a colon and taking a single argu-
ment. In the expression 2 raisedTo: 6 modulo: 10, the message selector
raisedTo:modulo: takes the two arguments 6 and 10, one following each
colon. We send the message to the receiver 2.

Sequences of statements. A period or full-stop (.) is the statement separa-
tor. Putting a period between two expressions turns them into independent
statements like in x := 2. x := x + x. Here we first assign value 2 to the
variable x, and then duplicate its value by assigning a value of x + x to it.

Cascades. Semicolons (;) are used to send a cascade of messages to a single
receiver. In stream nextPutAll: ’Hello World’; close we first send the
keyword message nextPutAll: ’Hello World’ to the receiver stream, and
then we send the unary message close to the same receiver.

Method return. ^ is used to return a value from a method.

The basic classes Number, Character, String and Boolean are described in
Chapter : Basic Classes.

1.2 Pseudo-variables

In Pharo, there are 6 pseudo-variables: nil, true, false, self, super, and
thisContext. They are called pseudo-variables because they are predefined
and cannot be assigned to. true, false, and nil are constants, while the val-
ues of self, super, and thisContext vary dynamically as code is executed.

4

1.3 Messages and message sends

• true and false are the unique instances of classes True and False
which are the subclasses of class Boolean. See Chapter : Basic Classes
for more details.

• self always refers to the receiver of the message and denotes the ob-
ject in which the corresponding method will be executed. Therefore,
the value of self dynamically changes during the program execution,
but can not be assigned in the code.

• super also refers to the receiver of the message too, but when you send
a message to super, the method-lookup changes so that it starts from
the superclass of the class containing the method that sends message
to super. For further details see Chapter : The Pharo Object Model.

• nil is the undefined object. It is the unique instance of the class Un-
definedObject. Instance variables, class variables and local variables
are, by default, initialized to nil.

• thisContext is a pseudo-variable that represents the top frame of the
execution stack and gives access to the current execution point. this-
Context is normally not of interest to most programmers, but it is es-
sential for implementing development tools such as the debugger, and
it is also used to implement exception handling and continuations.

1.3 Messages and message sends

As we described, there are three kinds of messages in Pharo with predefined
precedence. This distinction has been made to reduce the number of manda-
tory parentheses.

Here we give a brief overview on message kinds and ways for sending and
executing them, while more detailed description is provided in Chapter : Un-
derstanding messages.

1. Unary messages take no argument. 1 factorial sends the message
factorial to the object 1. Unary message selectors consist of alphanu-
meric characters, and start with a lower case letter.

2. Binary messages take exactly one argument. 1 + 2 sends the message
+ with argument 2 to the object 1. Binary message selectors consist of
one or more characters from the following set: + - / * ~ < > = @
% | & ? ,

3. Keyword messages take an arbitrary number of arguments. 2 raisedTo:
6 modulo: 10 sends the message consisting of the message selector
raisedTo:modulo: and the arguments 6 and 10 to the object 2. Key-
word message selectors consist of a series of alphanumeric keywords,
where each keyword starts with a lower-case letter and ends with a
colon.

5

Syntax in a nutshell

Message precedence

Unary messages have the highest precedence, then binary messages, and fi-
nally keyword messages, while brackets can be used to change the evaluation
order.

Thus, in the following example we first send factorial to 3 which will give
us result 6. Afterwards we send + 6 to 1 which gives the result 7, and finally
we send raisedTo: 7 to 2.

2 raisedTo: 1 + 3 factorial
>>> 128

Precedence aside, for the messages of the same kind, execution is strictly
from left to right. Hence, as we have two binary messages, the following ex-
ample return 9 and not 7.

1 + 2 * 3
>>> 9

Parentheses must be used to alter the order of evaluation as follows:

1 + (2 * 3)
>>> 7

1.4 Sequences and cascades

All expressions may be composed in sequences separated by period, while
message sends may be also composed in cascades by semi-colons. A period
separated sequence of expressions causes each expression in the series to be
evaluated as a separate statement, one after the other.

Transcript cr.
Transcript show: 'hello world'.
Transcript cr

This will send cr to the Transcript object, then send to Transcript the mes-
sage show: 'hello world', and finally send it another cr, again.

When a series of messages is being sent to the same receiver, then this can be
expressed more succinctly as a cascade. The receiver is specified just once,
and the sequence of messages is separated by semi-colons as follows:

Transcript
cr;
show: 'hello world';
cr

This cascade has precisely the same effect as the sequence in the previous
example.

6

1.5 Method syntax

1.5 Method syntax

Whereas expressions may be evaluated anywhere in Pharo (for example, in a
playground, in a debugger, or in a browser), methods are normally defined in
a browser window, or in the debugger. Methods can also be filed in from an
external medium, but this is not the usual way to program in Pharo.

Programs are developed one method at a time, in the context of a given class.
A class is defined by sending a message to an existing class, asking it to cre-
ate a subclass, so there is no special syntax required for defining classes.

Here is the method lineCount defined in the class String. The usual conven-
tion is to refer to methods as ClassName>>methodName. Here the method is
then String>>lineCount. Note that ClassName>>methodName is not part of
the Pharo syntax just a convention used in books to clearly define a method
within a class in which it is defined.

String >> lineCount
"Answer the number of lines represented by the receiver, where

every cr adds one line."

| cr count |
cr := Character cr.
count := 1 min: self size.
self do: [:c | c == cr ifTrue: [count := count + 1]].
^ count

Syntactically, a method consists of:

1. the method pattern, containing the name (i.e., lineCount) and any
parameters (none in this example),

2. comments which may occur anywhere, but the convention is to put
one at the top that explains what the method does,

3. declarations of local variables (i.e., cr and count), and

4. any number of expressions separated by dots (here there are four).

The execution of any expression preceded by a ^ (a caret or upper arrow,
which is Shift-6 for most keyboards) will cause the method to exit at that
point, returning the value of the expression that follows the ^. A method
that terminates without explicitly returning value of some expression will
implicitly return self object.

Parameters and local variables should always start with lower case letters.
Names starting with upper-case letters are assumed to be global variables.
Class names, like Character, for example, are simply global variables refer-
ring to the object representing that class.

7

Syntax in a nutshell

1.6 Block syntax

Blocks (lexical closures) provide a mechanism to defer the execution of ex-
pressions. A block is essentially an anonymous function with a definition
context. A block is executed by sending it the message value. The block an-
swers the value of the last expression in its body, unless there is an explicit
return (with ^) in which case it returns the value of the returned expression.

[1 + 2] value
>>> 3

[3 = 3 ifTrue: [^ 33]. 44] value
>>> 33

Blocks may have parameters each of which is declared with a leading colon.
A vertical bar separates the parameters declaration from the body of the
block. To evaluate a block with one parameter, you must send it the message
value: with one argument. A two-parameter block must be evaluated by
sending value:value: with two arguments, and so on, up to 4 arguments.

[:x | 1 + x] value: 2
>>> 3

[:x :y | x + y] value: 1 value: 2
>>> 3

If you have a block with more than four parameters, you must use value-
WithArguments: and pass the arguments in an array. However, a block with
a large number of parameters is often a sign of a design problem.

In blocks there may be also declared local variables, surrounded by vertical
bars, just like local variable declarations in a method. Local variables are de-
clared after arguments and vertical bar separator, and before the block body.
In the following example, x y are parameters, and z is local variable.

[:x :y |
| z |
z := x + y.
z] value: 1 value: 2

>>> 3

Blocks are actually lexical closures, since they can refer to variables of the
surrounding environment. The following block refers to the variable x of its
enclosing environment:

| x |
x := 1.
[:y | x + y] value: 2
>>> 3

8

1.7 Conditionals and loops

Blocks are instances of the class BlockClosure. This means that they are
objects, so they can be assigned to variables and passed as arguments just
like any other object.

1.7 Conditionals and loops

Pharo offers no special syntax for control constructs. Instead, these are typ-
ically expressed by sending messages to booleans, numbers and collections,
with blocks as arguments.

Some conditionals

Conditionals are expressed by sending one of the messages ifTrue:, if-
False: or ifTrue:ifFalse: to the result of a boolean expression. See Chap-
ter : Basic Classes, for more about booleans.

(17 * 13 > 220)
ifTrue: ['bigger']
ifFalse: ['smaller']

>>>'bigger'

Some loops

Loops are typically expressed by sending messages to blocks, integers or col-
lections. Since the exit condition for a loop may be repeatedly evaluated, it
should be a block rather than a boolean value. Here is an example of a very
procedural loop:

n := 1.
[n < 1000] whileTrue: [n := n*2].
n
>>> 1024

whileFalse: reverses the exit condition.

n := 1.
[n > 1000] whileFalse: [n := n*2].
n
>>> 1024

timesRepeat: offers a simple way to implement a fixed number of iterations
through the loop body:

n := 1.
10 timesRepeat: [n := n*2].
n
>>> 1024

9

Syntax in a nutshell

We can also send the message to:do: to a number which then acts as the
initial value of a loop counter. The two arguments are the upper bound, and
a block that takes the current value of the loop counter as its argument:

result := String new.
1 to: 10 do: [:n | result := result, n printString, ' '].
result
>>> '1 2 3 4 5 6 7 8 9 10 '

High-order iterators

Collections comprise a large number of different classes, many of which sup-
port the same protocol. The most important messages for iterating over
collections include do:, collect:, select:, reject:, detect: and in-
ject:into:. These messages represent high-level iterators that allow one
to write very compact code.

An Interval is a collection that lets one iterate over a sequence of numbers
from the starting point to the end. 1 to: 10 represents the interval from
1 to 10. Since it is a collection, we can send the message do: to it. The argu-
ment is a block that is evaluated for each element of the collection.

result := String new.
(1 to: 10) do: [:n | result := result, n printString, ' '].
result
>>> '1 2 3 4 5 6 7 8 9 10 '

collect: builds a new collection of the same size, transforming each ele-
ment. You can think of collect: as the Map in the MapReduce program-
ming.

(1 to:10) collect: [:each | each * each]
>>> #(1 4 9 16 25 36 49 64 81 100)

select: and reject: build new collections, each containing a subset of the
elements of the iterated collection that satisfies, or not, respectively, the
boolean block condition.

detect: returns the first element in the collection that satisfies the condi-
tion.

Don’t forget that strings are also collections (of characters), so you can iter-
ate over all the characters.

'hello there' select: [:char | char isVowel]
>>> 'eoee'

'hello there' reject: [:char | char isVowel]
>>> 'hll thr'

'hello there' detect: [:char | char isVowel]
>>> $e

10

1.8 Method annotations: Primitives and pragmas

Finally, you should be aware that collections also support a functional-style
fold operator in the inject:into: method. You can also think of it as the
Reduce in the MapReduce programming model. This lets you generate a cu-
mulative result using an expression that starts with a seed value and injects
each element of the collection. Sums and products are typical examples.

(1 to: 10) inject: 0 into: [:sum :each | sum + each]
>>> 55

This is equivalent to 0+1+2+3+4+5+6+7+8+9+10.

More about collections can be found in Chapter : Collections.

1.8 Method annotations: Primitives and pragmas

In Pharo methods can be annotated too. Method annotation are delimitated
by < and >. There are used for two main scenarios: execution specific meta-
data for the primitives of the language and metadata.

Primitives

In Pharo everything is an object, and everything happens by sending mes-
sages. Nevertheless, at certain points we hit rock bottom. Certain objects can
only get work done by invoking virtual machine primitives. Such primitives
are essential primitives since they cannot be expressed in Pharo.

For example, the following are all implemented as primitives: memory allo-
cation (new, new:), bit manipulation (bitAnd:, bitOr:, bitShift:), pointer
and integer arithmetic (+, -, <, >, *, /, =, ==...), and array access (at:, at:put:).

When a method with a primitive is executed, the primitive code is executed
in place of the method. A method using such a primitive may include addi-
tional Pharo code, which will be executed only if the primitive fails (for the
case the primitive is an optional one).

In the following example, we see the code for SmallInteger>>+. If the prim-
itive fails, the expression super + aNumber will be evaluated and its value
returned.

+ aNumber
"Primitive. Add the receiver to the argument and answer with the

result
if it is a SmallInteger. Fail if the argument or the result is not

a
SmallInteger Essential No Lookup. See Object documentation

whatIsAPrimitive."

<primitive: 1>
^ super + aNumber

11

Syntax in a nutshell

Pragmas

In Pharo, the angle bracket syntax is also used for method annotations called
pragmas. Once a method has been annotated with a pragma, the annotations
can be collected using a collection (see the class PragmaCollector).

1.9 Chapter summary

• Pharo has only six reserved identifiers known as pseudo-variables:
true, false, nil, self, super, and thisContext.

• There are five kinds of literal objects: numbers (5, 2.5, 1.9e15, 2r111),
characters ($a), strings ('hello'), symbols (#hello), and arrays (#('hello'
#hi) or { 1 . 2 . 1 + 2 })

• Strings are delimited by single quotes, comments by double quotes. To
get a quote inside a string, double it.

• Unlike strings, symbols are guaranteed to be globally unique.

• Use #(...) to define a literal array at compile time. Use { ... } to
define a dynamic array at runtime. Note that #(1+2) size >>> 3, but
{12+3} size >>> 1. To observe why, compare #(12+3) inspect and
{1+2} inspect.

• There are three kinds of messages: unary (e.g., 1 asString, Array
new), binary (e.g., 3 + 4, 'hi', ' there'), and keyword (e.g., 'hi'
at: 2 put: $o)

• A cascaded message send is a sequence of messages sent to the same
target, separated by semi-colons: OrderedCollection new add:
#calvin; add: #hobbes; size >>> 2

• Local variables declarations are delimited by vertical bars. Use := for
assignment. |x| x := 1

• Expressions consist of message sends, cascades and assignments, eval-
uated left to right (and optionally grouped with parentheses). State-
ments are expressions separated by periods.

• Block closures are expressions enclosed in square brackets. Blocks may
take arguments and can contain temporary variables. The expressions
in the block are not evaluated until you send the block a value message
with the correct number of arguments. [:x | x + 2] value: 4

• There is no dedicated syntax for control constructs, just messages
whose sends conditionally evaluate blocks.

12

Bibliography

13

	Illustrations
	Syntax in a nutshell
	Syntactic elements
	Pseudo-variables
	Messages and message sends
	Message precedence

	Sequences and cascades
	Method syntax
	Block syntax
	Conditionals and loops
	Some conditionals
	Some loops
	High-order iterators

	Method annotations: Primitives and pragmas
	Primitives
	Pragmas

	Chapter summary

	Bibliography

