
Pharo by Example 9.0

Stéphane Ducasse, Sebastijan Kaplar, Gordana Rakic and Quentin Ducasse

July 3, 2021

Copyright 2017 by Stéphane Ducasse, Sebastijan Kaplar, Gordana Rakic and Quentin
Ducasse.

The contents of this book are protected under the Creative Commons Attribution-
ShareAlike 3.0 Unported license.

You are free:

• to Share: to copy, distribute and transmit the work,

• to Remix: to adapt the work,

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or
licensor (but not in any way that suggests that they endorse you or your use of
the work).

Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under the same, similar or a compatible license.

For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to this web page:
http://creativecommons.org/licenses/by-sa/3.0/

Any of the above conditions can be waived if you get permission from the copyright
holder. Nothing in this license impairs or restricts the author’s moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-
readable summary of the Legal Code (the full license):
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Layout and typography based on the sbabook LATEX class by Damien Pollet.

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Contents

Illustrations ii

1 Developing a simple counter 1

1.1 Our use case . 1

1.2 Create a package and class . 2

1.3 Define protocols and methods . 5

1.4 Create a method . 5

1.5 Adding a setter method . 7

1.6 Define a Test Class . 7

1.7 Saving your code on git with Iceberg . 8

1.8 Adding more messages . 12

1.9 Instance initialization method . 12

1.10 Define an initialize method . 13

1.11 Define a new instance creation method . 14

1.12 Better object description . 15

1.13 Saving your code on a remote server . 15

1.14 Conclusion . 18

Bibliography 19

i

Illustrations

1-1 Package created and class creation template. 2

1-2 Class created: It inherits from Object class and has one instance

variable named count. 4

1-3 Counter class has now a comment! Well done. 4

1-4 The method editor selected and ready to define a method. 6

1-5 The method count defined in the protocol accessing. 6

1-6 A first test is defined and it passes. 8

1-7 Iceberg Repositories browser on a fresh image indicates that if you want

to version modifications to Pharo itself you will have to tell Iceberg where

the Pharo clone is located. But you do not care. 9

1-8 Add and create a project named MyCounter and with the src subfolder. . . 10

1-9 Selecting the Add package iconic button, add your package MyCounter to

your project. 10

1-10 Now Iceberg shows you that you did not commit your code. 11

1-11 Iceberg shows you the changes about to be commited. 11

1-12 Once you save your change, Iceberg shows you that 12

1-13 Class with more green tests. 13

1-14 Counter instance better description. 15

1-15 A Repository browser opened on your project. 16

1-16 GitHub HTTPS address our our project. 17

1-17 Using the GitHub HTTPS address. 17

1-18 Commits sent to the remote repository. 17

ii

CHA P T E R 1
Developing a simple counter

To get started in Pharo, we invite you to implement a simple counter by fol-
lowing the steps given below. In this exercise you will learn how to create
packages, classes, methods, and instances. You will learn how to define tests
and more. This simple tutorial covers most of the important actions that
we do when developing in Pharo. You can also watch the companion videos
available in the Pharo mooc at http://mooc.pharo.org: they illustrate this tuto-
rial in a more lively manner. Just pay attention that the videos are for Pharo
80 and some details are different in Pharo 90.

Note that the development flow promoted by this little tutorial is traditional
in the sense that you will define a package, a class, then define its instance
variable then define its methods and finally execute it. We show also how you
can save your code with git hosting services such as github using Iceberg.
Now in Pharo, developers often follows a totally different style that we call
Xtreme TDD: they execute an expression that raises errors. Such errors are
caught by the debugger and the developer can code directly in the debugger
and let the system define some instance variables and methods on the fly for
them.

Once you will have finish this tutorial, you will feel more confident with
Pharo and we strongly suggest you to try the other style. Again there is a
video showing this powerful alternate flow of coding.

1.1 Our use case

Here is our use case: We want to be able to create a counter, increment it
twice, decrement it and check that its value is correct. It looks like this little
use case will fit perfectly a unit test - you will define one later.

1

http://mooc.pharo.org

Developing a simple counter

Figure 1-1 Package created and class creation template.

| counter |
counter := Counter new.
counter increment; increment.
counter decrement.
counter count = 1

Now we will develop all the mandatory class and methods to support this
scenario.

In this part, you will create your first class. In Pharo, a class is defined in a
package. You will create a package then a class. The steps we will do are the
same ones every time you create a class, so memorize them well.

1.2 Create a package and class

Using the Browser create a package. The system will ask you a name, write
MyCounter. This new package is then created and added to the list. Figure
1-1 shows the result of creating such a package.

Create a class.

Creating a class requires five steps. They consist basically in editing the class
definition template to specify the class you want to create.

• Superclass Specification. First, you should replace the word NameOf-
Superclass with the word Object. Thus, you specify the superclass of

2

1.2 Create a package and class

the class you are creating. Note that this is not always the case that
Object is the superclass, since you may to inherit behavior from a
class specializing already Object.

• Class Name. Next, you should fill in the name of your class by replac-
ing the word NameOfClass with the word Counter. Take care that the
name of the class starts with a capital letter and that you do not re-
move the #sign in front of NameOfClass. This is because the class we
want to create does not exist yet, so we have to give its name, and we
use a Symbol (a unique string in Pharo) to do so.

• Instance Variable Specification. Then, you should fill in the names
of the instance variables of this class. We need one instance variable
called count. Take care that you leave the string quotes!

• Class Variable Specification. As we do not need any class variable make
sure that the argument for the class instance variables is an empty
string classInstanceVariableNames: ''.

You should get the following class definition.

Object subclass: #Counter
instanceVariableNames: 'count'
classVariableNames: ''
package: 'MyCounter'

Now we should compile it. We now have a filled-in class definition for the
class Counter. To define it, we still have to compile it. Therefore, select the
accept menu item. The class Counter is now compiled and immediately
added to the system.

Figure 1-2 illustrates the resulting situation that the browser should show.

The tool runs automatically some code critic and some of them are just inac-
curate, so do not care for now.

As we are disciplined developers, we add a comment to Counter class by
clicking Comment pane and the Edit / View comment toggle. You can write
the following comment:

`Counter` is a simple concrete class which supports incrementing and
decrmenting.

Its API is
- `decrement` and `increment`
- `count`
Its creation message is `startAt:`

The comment are written in Microdown a markdown dialect and they are
nicely rendered.

Select menu item ’accept’ to store this class comment in the class.

Figure 1-3 shows the class with its comment.

3

Figure 1-2 Class created: It inherits from Object class and has one instance

variable named count.

Figure 1-3 Counter class has now a comment! Well done.

1.3 Define protocols and methods

1.3 Define protocols and methods

In this part you will use the browser to learn how to add protocols and meth-
ods.

The class we have defined has one instance variable named count. You should
remember that in Pharo, (1) everything is an object, (2) that instance vari-
ables are private to the object, and (3) that the only way to interact with an
object is by sending messages to it.

Therefore, there is no other mechanism to access the instance variable val-
ues from outside an object than sending a message to the object. What you
can do is to define messages that return the value of the instance variable.
Such methods are called accessors, and it is a common practice to always de-
fine and use them. We start to create an accessor method for our instance
variable count.

A method is usually sorted into a protocol. These protocols are just a group
of methods without any language semantics, but convey important naviga-
tion information for the reader of your class. Although protocols can have
any name, Pharo programmers follow certain conventions for naming these
protocols. If you define a method and are not sure what protocol it should be
in, first go through existing code and try to find a fitting name.

1.4 Create a method

Now let us create the accessor methods for the instance variable count. Start
by selecting the class Counter in a browser, and make sure the you are edit-
ing the instance side of the class (i.e., we define methods that will be sent to
instances) by deselecting the Class side radio button.

Click on the instance method tab and define your method.

Figure 1-4 shows the method editor ready to define a method.

As a general hint, double click at the end of or beginning of the text and start
typing your method: this automatically replace your Replace the template
with the following method definition:

count
^ count

This defines a method called count, taking no arguments, having a method
comment and returning the instance variable count. Then choose accept in
the menu to compile the method. The method is automatically categorized in
the protocol accessing.

Figure 1-5 shows the state of the system once the method is defined.

5

Figure 1-4 The method editor selected and ready to define a method.

Figure 1-5 The method count defined in the protocol accessing.

1.5 Adding a setter method

You can now test your new method by typing and evaluating the next ex-
pression in a Playground, or any text editor.

Counter new count
>>> nil

This expression first creates a new instance of Counter, and then sends the
message count to it. It retrieves the current value of the counter. This should
return nil (the default value for non-initialised instance variables). After-
wards we will create instances with a reasonable default initialisation value.

1.5 Adding a setter method

Another method that is normally used besides the accessor method is a so-
called setter method. Such a method is used to change the value of an in-
stance variable from a client. For example, the expression Counter new
count: 7 first creates a new Counter instance and then sets its value to 7:

The snippets shows that the counter effectively contains its value.

| c |
c := Counter new count: 7.
c count
>>> 7

This setter method does not currently exist, so as an exercise write the method
count: such that, when invoked on an instance of Counter, instance vari-
able is set to the argument given to the message. Test your method by typing
and evaluating the expression above.

1.6 Define a Test Class

Writing tests is an important activity that will support the evolution of your
application. Remember that a test is written once and executed million times.
For example if we have turned the expression above into a test we could have
checked automatically that our new method is correctly working.

To define a test case we will define a class that inherits from TestCase. There-
fore define a class named CounterTest as follows:

TestCase subclass: #CounterTest
instanceVariableNames: ''
classVariableNames: ''
package: 'MyCounter'

Now we can write a first test by defining one method. Test methods should
start with text to be automatically executed by the TestRunner or when you
press on the icon of the method. Now to make sure that you understand in
which class we define the method we prefix the method body with the class

7

Developing a simple counter

Figure 1-6 A first test is defined and it passes.

name and >>. CounterTest>>means that the method is defined in the class
CounterTest.

Figure 1-6 shows the definition of the method testCountIsSetAndRead in
the class CounterTest.

Define the following method. It first creates an instance, sets its value and
verifies that the value is correct. The message assert:equals: is a special
message verifying if the test passed or not.

CounterTest >> testCountIsSetAndRead
| c |
c := Counter new.
c count: 7.
self assert: c count equals: 7

Verify that the test passes by executing either pressing the icon in front of
the method (as shown by Figure 1-6) or using the TestRunner available in the
Tools menus (selecting your package). Since you have a first green test. This
is a good moment to save your work.

1.7 Saving your code on git with Iceberg

With Iceberg, we will show you how to save your code locally then later we
will push it to GitHub.

8

1.7 Saving your code on git with Iceberg

Figure 1-7 Iceberg Repositories browser on a fresh image indicates that if you

want to version modifications to Pharo itself you will have to tell Iceberg where

the Pharo clone is located. But you do not care.

Open Iceberg.

You should the situation depicted by Figure 1-7 which shows the top level
Iceberg pane. It shows that for now you do not have defined nor loaded any
project. It shows the Pharo project and indicates that it could not find its
local repository by displaying ’Local repository missing’. You do not have to
worry about the Pharo project or repository if you do not want to contribute
to Pharo. So just go ahead. Since you do not plan to modify and version the
Pharo system code, you do not have to worry.

Add and configure a project.

Press the iconic button Add to create a new project. Pick up ’New Reposi-
tory’ and you should get a configuration pane similar to the one of Figure
1-8. Here we define the Project named ’MyCounter’, give a directory on our
disk and we indicate that the source should be in the subfolder src.

Add your package to the project.

Once added, IcebergWorking copy browser should show you an empty pane
because you did not add any package to your project. Click on the Add pack-
age iconic button and select the package MyCounter as shown by Figure 1-9.

Commit your changes.

Once you package is added, Iceberg shows you that you did not commit your
code as shown in Figure 1-11. Press the Commit iconic button. Iceberg will
show you all the changes that are about to be saved (Figure 1-11). Enter a
commit message and commit

Code saved.

Once you have commited, Iceberg indicates that your system and local repos-
itory are in sync.

9

Figure 1-8 Add and create a project named MyCounter and with the src sub-

folder.

Figure 1-9 Selecting the Add package iconic button, add your package My-

Counter to your project.

Figure 1-10 Now Iceberg shows you that you did not commit your code.

Figure 1-11 Iceberg shows you the changes about to be commited.

Developing a simple counter

Figure 1-12 Once you save your change, Iceberg shows you that .

1.8 Adding more messages

Before implementing the following messages we define first a test. We define
one test for the method increment as follows:

CounterTest >> testIncrement
| c |
c := Counter new.
c count: 0 ; increment; increment.
self assert: c count equals: 2

• Propose a definition for the method increment.

• Define a test and method for the method decrement.

• Implement the following methods increment and decrement in the
protocol ’operation’.

• Implement also a new test method for the method decrement.

Counter >> increment
count := count + 1

Counter >> decrement
count := count - 1

Run your tests they should pass (as shown in Figure 1-13). Again this is a
good moment to save your work. Saving at point where tests are green is
always a good process. To save your changes, you just have to commit them.

1.9 Instance initialization method

Right now the initial value of our counter is not set as the following expres-
sion shows it.

Counter new count
>>> nil

12

1.10 Define an initialize method

Figure 1-13 Class with more green tests.

Let us write a test checking that a newly created instance has 0 as a default
value.

CounterTest >> testInitialize
self assert: Counter new count equals: 0

If you run it, it will turn yellow indicating a failure (a situation that you an-
ticipated but that is not correct) - by opposition to an error which is an antic-
ipated situation leading to failed assertion.

1.10 Define an initialize method

Now we have to write an initialization method that sets a default value of the
count instance variable. However, as we mentioned the initializemes-
sage is sent to the newly created instance. This means that the initialize
method should be defined at the instance side as any method that is sent to
an instance of Counter (like increment) and decrement. The initialize
method is responsible to set up the instance variable default values.

Therefore at the instance side, you should create a protocol initializa-
tion, and create the following method (the body of this method is left blank.
Fill it in!).

Counter >> initialize
"set the initial value of the value to 0"
...
Fill me please!!!

13

Developing a simple counter

Now create a new instance of class Counter. Is it initialized by default? The
following code should now work without problem:

Counter new increment count
>>> 1

and the following one should return 2

Counter new increment; increment; count
>>> 2

But better write a test since we will execute it all the time.

TestCounter >> testCounterWellInitialized
self
assert: (Counter new increment; increment; count)
equals: 2

Again save your work before starting the next step.

1.11 Define a new instance creation method

We would like to show you the difference between an instance method (i.e.
sent to instances) and a class method (i.e., to a class). In fact the only differ-
ence is the place to define them. An instance method is defined in the in-
stance side of Code Browser while class methods are defined on the class side
– pressing the Class button.

Define a different instance creation method named startingAt:. This method
receives an integer as argument and returns an instance of Counter with the
specified value.

Let us define a test:

TestCounter >> testCounterStartingAt5
self assert: (Counter startingAt: 5) count equals: 5

Here the message startingAt: is sent to the class Counter itself.

Your implementation should look like

Counter class >> startingAt: anInteger
^ self new count: anInteger.

Note that self in such method refers to the class Counter itself.

Let us write another test to check that everything is working.

CounterTest >> testAlternateCreationMethod
self assert: ((Counter startingAt: 19) increment ; count) equals:

20

14

1.12 Better object description

Figure 1-14 Counter instance better description.

1.12 Better object description

When you open an inspect (putting a self halt inside a method definition)
you obtain an inspector or when you select the expression Counter new and
print its result (using the Print it menu of the editor) you obtain a simple
string 'a Counter'.

Counter new
>>> a Counter

We would like to get a much richer information for example knowing the
counter value. Implement the following methods in the protocol printing

Counter >> printOn: aStream
super printOn: aStream.
aStream nextPutAll: ' with value: ', count printString.

Note that the method printOn: is used when you print an object using print
it (See Figure 1-14) or click on self in an inspector.

We let you define a method for this method. A tip send the message printString
to Counter new to get its string representation.

Counter new printString
>>> a Counter with value: 0

1.13 Saving your code on a remote server

Up until now you saved your code on your local disc. We will now show how
you can save your code on a remote repository such as the one you can cre-
ate on GitHub http://github.com or Gitlab.

15

http://github.com

Developing a simple counter

Figure 1-15 A Repository browser opened on your project.

Create a project on the remote server.

First you should create a project with the same name than the one of your
project.

Add a remote repository in HTTPS access.

Clicking on the Repository iconic button of theWorking copy browser, you get
access to the Repository browser open on your project as show in Figure 1-15.

Then you just have to add a remote repository using the Add remote iconic
button of the Repository browser. For this we will use the project identifica-
tion address given by the remote browser. Since we decided to use HTTPS
we use https://github.com/Ducasse/MyCounter.git as address as shown in
Figure 1-16 and Figure 1-17.

Push.

As soon as you add a valid server address, Iceberg will show a little red indi-
cation on the Push iconic button. This shows that you have changes in your
local repository that have not being pushed to your remote repository. Now
you just have to press the Push iconic button. Iceberg will show you the com-
mits that will be pushed to the server as shown in Figure 1-18.

Now you fully saved your code and you will be able to reload from another
machine or location. This will enable you to work remotely and collabo-
rately.

16

Figure 1-16 GitHub HTTPS address our our project.

Figure 1-17 Using the GitHub HTTPS address.

Figure 1-18 Commits sent to the remote repository.

Developing a simple counter

1.14 Conclusion

In this tutorial you learned how to define packages, classes, methods, and
define tests. The flow of programming that we chose for this first tutorial is
similar to most of programming languages. However in Pharo, smart and ag-
ile developers use use a different flow: It is based on defining a test first, exe-
cuting it and when the execution raises an error to define the corresponding
classes, methods, and instance variable often from inside the debugger. This
is a super powerful flow because you get all the mandartory information and
this is a productivity boost.

We suggest you now to redo the exercise by defining a test first, executing it
and defining method in the debugger. Watch the second counter video of the
Pharo mooc available at http://mooc.pharo.org to understand the flow.

18

http://mooc.pharo.org

Bibliography

19

	Illustrations
	Developing a simple counter
	Our use case
	Create a package and class
	Create a class.

	Define protocols and methods
	Create a method
	Adding a setter method
	Define a Test Class
	Saving your code on git with Iceberg
	Open Iceberg.
	Add and configure a project.
	Add your package to the project.
	Commit your changes.
	Code saved.

	Adding more messages
	Instance initialization method
	Define an initialize method
	Define a new instance creation method
	Better object description
	Saving your code on a remote server
	Create a project on the remote server.
	Add a remote repository in HTTPS access.
	Push.

	Conclusion

	Bibliography

